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à 1. Introduction
This note discusses Gibbs estimation of the Roll model and various modifications. The 
goal is a more discursive and heuristic treatment of material covered in Hasbrouck 
(2004, 2006). Other applications of Gibbs samplers in market microstructure include 
Hasbrouck (1999) and Ball and Chordia (2001).

The techniques discussed here follow an approach that relies on simulation to 
characterize model parameters. Applied to microstructure models, there are three key 
elements:

è Bayesian analysis

è Simulation

è Characterization of microstructure data generating processes by their 
conditional probabilities.

In more detail:
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Bayesian analysis
The models are estimated in a Bayesian framework. The differences between Bayesian 
and classical analysis are continually debated and discussed. The framework here is 
definitely Bayesian, but it should be noted that even if one doesn't buy the full Bayesian 
philosophy, the techniques discussed here can be motivated on grounds of estimation 
simplicity and computational efficiency.
This is an unusual claim. Bayesian analyses are usually more complex (both 
conceptually and computationally) than their classical counterparts. This is sometimes 
cited by Bayesian adherents as the prime barrier to their widespread adoption. Most 
microstructure models, though, are dynamic (over time) and they have latent (hidden, 
unobservable) quantities. The classic Roll model is dynamic, and the trade direction 
indicator ("buy or sell") variables are not observed.

Dynamic latent variable models can be formulated in state-space form and estimated via 
maximum likelihood. The latent variables are often non-Gaussian (e.g., again, the trade 
direction indicator variables), and if one wants to go beyond the techniques of 
multivariate linear models (like VARs), estimation involves nonlinear filtering. The 
Gibbs estimates are usually quicker and simpler.

There are presently a number of Bayesian statistics textbooks available. In my opinion 
the most useful for financial econometricians, are those that discuss econometrics from a 
Bayesian perspective. Lancaster (2004) and Geweke (2005) are both excellent. 
Lancaster's treatment is particularly accessible; Geweke presents more results. Nelson 
and Kim (2000) is a good introduction to the techniques in the context of a specific 
problem (regime switching models). In financial econometrics, the heaviest use of 
Bayesian simulation has been in modeling stochastic volatility. Shephard (2005) is a 
good survery of this area. Tanner (1996) and Carlin and Louis (2004) consider a broader 
range of Bayesian statistical tools and applications.

Simulation.
The output of a classical procedure (e.g., OLS) is usually a statement about the 
distribution of a parameter. E.g., "q is asympototically normally distributed with mean θ¯ 
and variance σθ

2," where the mean and variance quantities are computed directly. But we 
could also characterize a distribution by a sample of draws from that distribution. This is 
what most of modern Bayesian analysis does. The output of the estimation procedures 
discussed here is a stream of random draws of the parameters of interest (conditional on 
the model and the data). From this stream we can construct an estimate of the full 
distribution (via kernel smoothing) or simply a summary measure (like the mean or 
median).

Among other things, simulation facilitates characterization of distributions for functions 
of random variables.  For example, suppose that x∼N Hμ, σ2L and we'd like to 
characterize the distribution of y = f HxL where f is sufficiently complicated that we 
can't get closed-form results.  We simply generate random values xi and empirically 
examine the distribution of yi = f HxiL.

The link between simulation and Bayesian analysis is strong for the following reason. 
The distributions that arise in Bayesian analysis often describe many random variables 
(i.e., they are of high dimension). It also often happens that they have no closed form 
representation. Instead, they are characterized by simulation. The Gibbs procedure 
belongs to a class of random number generators called Markov Chain Monte Carlo 
(MCMC) techniques. They work by setting up rules for moving from one realization 
(draw) of the random variables to a subsequent realization. These draws are viewed as 
"states" in a Markov chain, and the rules define the transition probabilities. The limiting 
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distribution of the states is identical to the distribution of the variables of interest, and is 
approximated by repeated application of the transition function.

Conditional probabilities
To set up a Gibbs estimate, we need to compute conditional densities for all of the 
unknowns (parameters and latent data). The conditional distributions for the parameters 
are usually identical to those found in many other applications (e.g., the normal Bayesian 
linear regression model). This note merely summarizes these distributions, refering the 
reader elsewhere for a fuller treatment. The conditional distributions for the latent data, 
though, are specific to the problem at hand. Although not particularly complicated, they 
are non-standard, and this note covers them in greater detail.

Programs
This note is written in Mathematica. Some Mathematica code and results are embedded. 
Most of the results, though, are computed using SAS code that is available on my web 
site. To obtain these programs, go to the link for Empirical Market Microstructure 
(2006, Oxford University Press), off of my home page at www.stern.nyu.edu/~jhasbrou. 
Follow the link for SAS programs and data. The unzipped files contain the programs 
used in this note (and other programs related to the book).

The programs make heavy use of SAS/IML ("Interactive Matrix Language"). This is not 
the language I've used for most of my papers, but it is widely available. Anyone who has 
a copy of SAS should be able to run the programs. These programs are not "industrial 
strength". I've played around with them in generating the results for this note, but they 
haven't been tested against all the things that might come up in, say, the CRSP daily file. 
I haven't done any performance benchmarks, but I suspect that they run slower than 
comparable code in OX or Matlab.

The main programs used here are:

RollGibbs 2-trade case.sas
RollGibbs Analyze q.sas
RollGibbs 01.sas
RollGibbsBeta 01.sas

These programs call two macros: RollGibbs.sas and RollGibbsBeta.sas. These macros, 
in turn, make use of IML subroutines contained in a library called "imlstor". To set up 
this library, run the program RollGibbs Library 01.sas (which contains the code for the 
subroutines).

à 2. Overview
This note illustrates the estimation approach for the Roll (1984) model of transaction 
prices. In this model, the "efficient price" HmtL is assumed to follow a Gaussian random 
walk:

(1)mt = mt−1 + ut where ut∼N H0, σu
2L

The transaction price HptL is the efficient price, plus or minus a cost component that 
depends on whether the customer is buying or selling:

(2)pt = mt + c qt 
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where c  is the cost parameter and qt = ±1. (If the customer is buying, qt = +1; if 
selling, qt = −1). The trade prices are observed. The qt and the mt are not.
By taking first differences:

(3)∆pt = c ∆qt + ut

This specification is important because if the ∆qt were known, this would be a simple 
regression. 

è Bayesian estimation of normal linear regressions is well understood. The 
discussion (in the next section) starts with a review of these procedures. 

è There are two parameters in this "regression": c (the coefficient) and σu2. It is 
fairly easy to compute (in closed form) the posterior distributions 
f Hc » σu

2, p1, ..., pTL and f Hσu
2 » c, p1, ..., pTL. 

è It is not possible to compute in closed form the joint posterior 
f Hc, σu

2 » p1, ..., pTL. This motivates the next section, which 
summarizes the Gibbs sampler. 

è The Gibbs procedure is illustrated by applying it to a special case of the Roll 
model, one in which c and σu2 are known, but the qt are not. 

è The note then turns to a full estimation of the Roll model ...

è ... and extensions.

à 3. Mathematica initializations

à 4. Bayesian analysis of the normal linear regression

á The basic Bayesian approach

Bayesian analysis consists of using a model and data to update prior beliefs. The revised 
beliefs are usually called posterior beliefs, or simply "the posterior". Let y denote the 
observed data, and let the model be specified up to a parameter θ (possibly a vector).
Bayes theorem says:

(4)f Hθ » yL = f Hθ,yLccccccccccccccf HyL = f Hy»θL f HθLccccccccccccccccccccccccf HyL ∝ f Hy » θL f HθL
f HθL is an assumed prior distribution for the parameter.
f Hy » θL is the likelihood function for the observations, given a particular value of θ.
The use of ∝ ("is proportional to") reflects the fact that it is usually not necessary to 
compute f HyL, at least not by computing the marginal f HyL = Ÿ f Hθ, yL dθ. 
Instead, f HyLcan treated as a normalization constant, set so that the posterior integrates 
to unity.

Often a distribution of interest, say f HxL,  can be written as f HxL = k g HxL, where 
g HxL is a parsimonious function of x and k is some scaling factor. k might in fact be 
very complicated, possibly depending on other random variables and implicitly 
incorporating other distribution functions, but for purposes of characterizing the 
distribution of x, it is constant. In this case, g HxL is said to be the kernel of f HxL. 
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á Bayesian estimation of the normal linear regression model

The normal regression model is:

(5)y
N×1

= X
N×K

β
K×1

+ u
N×1

 where u∼N H0, ΩuL

X is a matrix of covariates (explanatory variables) possibly including a constant; β is the 
coefficient vector.

Estimation of coefficients (given the error variance)
Assume for the moment that σu2 is known. It is particularly convenient to assume a 
multivariate normal prior distribution for the coefficients:

(6)β∼N Hμβ
Prior, Ωβ

PriorL
The posterior distribution, f Hβ » yLis

(7)N Hμβ
Post, Ωβ

PostL
where

(8)μβ
Post = D d

(9)Ωβ
Post = D−1

(10)D−1 = X� Ωu
−1 X + HΩβ

PriorL−1
 

(11)d = X� Ωu
−1 y + HΩβ

PriorL−1
 μβ

Prior

As Ωβ
Prior increases in magnitude, the posterior mean and variance converge toward the 

usual OLS values.
In this case, both the prior and posterior have the same form (multivariate normal). Such 
a prior is said to be conjugate.

Simulating the coefficients
We'll often have to make a random draw from the coefficient distribution. To make a 
random draw from x

n×1
∼MVN Hμ, ΩL:

è Compute the Cholesky factorization F : Ω = F� F, where F is an upper 
triangular matrix.

è Draw z
n×1

 where the zi are i.i.d. N H0, 1L.

è Set the random draw as x = μ + F� z

Restrictions on the prior
The economic model sometimes imposes bounds on the coefficients. For example, in the 
Roll model, we'll often want to require c > 0. Suppose that the coefficient prior is

(12)β∼N Hμβ
Prior, Ωβ

PriorL, β̄ < β < β
¯

Note that when we write this, μβ
Prior, Ωβ

Prior denote the formal parameters of the 
normal density. But since the distribution is truncated, they no longer denote the mean 
and covariance of the density.

With this prior, the posterior is simply N Hμβ
Post, Ωβ

PostL, with μβ
Post  and 

Ωβ
Postcomputed as described above, restricted to the space β̄ < β < β

¯.
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Simulation from restricted normals.
First suppose that we want to make a random draw z from a standard normal density, 
restricted to the interval z̄ < z < z̄. The procedure is:

è Compute π̄ = Φ Hz̄L and π̄ = Φ Hz̄L, where Φ is the c.d.f. of the standard 
normal.

è Draw u from the uniform distribution over Hπ̄, π̄L
è Set z = Φ−1 HuL.

Now suppose that we want to make a bivariate random draw from 
x = J x1

x2
N∼N Hμ, ΩL, x̄ < x < x̄.

è Compute the Cholesky factorization F : Ω = F� F, where F is an upper 
triangular matrix.

è Set z̄ =
x1¯̄̄ ¯̄−μ1cccccccccccF11

 and z̄ = x1¯̄̄ ¯̄−μ1cccccccccccF11

è Draw z1 from the standard normal density, restricted to Hz̄, z̄L. Then 
x1 = μ1 + F11 z1 will have the properties required of x1.

è Set η = F11 z1. 

è Set z̄ =
x2¯̄̄ ¯̄−μ2−η
cccccccccccccccF22

 and z̄ = x2¯̄̄ ¯̄−μ2−ηcccccccccccccccF22

è Draw z2 from the standard normal density, restricted to Hz̄, z̄L. Then 
x2 = μ2 + F22 z2 will have the properties required of x2.

è The random draw as x = μ + F� z will have the required joint properties

This method may be generalized to higher dimensions.

Estimation of error variance (given the coefficients)
Assuming that β is known, it is convenient to specify a inverted gamma prior for σu2. 
One way of writing this is:

(13)1cccccσu2
∼Γ@aPrior, bPriorD

Then the posterior is

(14)1cccccσu
2 … y∼Γ@aPost, bPostD

 where

(15) aPost = aPrior + Ncccc2  and bPost = bPrior + ⁄i=1
N ui2cccccccccccc2

The ui are the regression residuals u = y − X β.

Further notes
The density of a gamma variate x with parameters a and b is:

PDF@GammaDistribution@a, λD, xD ê. λ → 1ê b

H 1ccccb L
−a

Æ−b x x−1+a
cccccccccccccccccccccccccccccccccccccccc

Gamma@aD
Mean@GammaDistribution@a, λDD ê. λ → 1êb

a
cccc
b
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Note: In the statistics literature, the Gamma distribution with parameters a  and b is 
usually expressed as immediately above. Mathematica parameterizes the distribution 
with the second parameter expressed as an inverse.

PDF@GammaDistribution@a, λD, xD ê. λ → 1ê b ê. x → 1êz

H 1ccccb L
−a

Æ− bccccz H 1ccccz L
−1+a

ccccccccccccccccccccccccccccccccccccccccccccccc
Gamma@aD

à 5. The Gibbs recipe
The Gibbs procedure is a vehicle for simulating from a complicated joint distribution 
f Hx1, ..., xnL , possibly one that possesses no closed form representation.

The draws are constructed by iterating over the full conditional distributions:

(16)

f Hx1 » x2, ..., xnL 

f Hx2 » x1, x3, ..., xnL 

...
f Hxn » x1, ..., xn−1L 

Let x =

i

k

jjjjjjjjjjj

x1
x2
ª
xn

y

{

zzzzzzzzzzz
Each iteration of the Gibbs sampler is called a sweep. 
Let x@iD denote the value of x at the conclusion of the ith sweep.
The procedure is:

è Initialization. Set x@0D to any feasible value.

è Sweep i:
Given x@i−1D:
Draw x1

@iD from f Ix1 … x2@i−1D, ..., xn@i−1DM
Draw x2

@iD from f Ix2 … x1@i−1D, x3
@i−1D, ..., xn@i−1DM

...
Draw xn@iD from f Ixn … x1@i−1D, ..., xn−1

@i−1DM
è Repeat

In the limit, as i → ∞,  x@iDis distributed as f HxL.

Notes

è The x@iD are not independently distributed: x@iD takes x@i−1D as its starting 
point. If the degree of dependence is high, a large number of sweeps may be 
needed to ensure proper mixing.

è The dependence may affect the calculation of some summary statistics. Think 
of the analogy to standard time series analysis. If z1, ..., zT are a sample 
of stationary time series data, Σzi êT is a consistent estimate of E@ztD. The 
standard error of this estimate, however, must be corrected for dependence.

è Convergence may be an issue. It is useful to graph the full sequence of draws.

è In analyzing the sequence of draws, it is common to throw out a few initial 
draws, so as to reduce the dependence on starting values. These discarded 
draws are sometimes called burn in draws.
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è The Gibbs sampler also works when multiple variables are drawn at once. We 
might, for example, draw x1

@iD and x2
@iD from 

f Ix1, x2 … x3@i−1D, ..., xn@i−1DM. This block sampling is often more 
computationally efficient.

Application to the normal regression model
From earlier results, we have f Hβ » y, σu

2L and f Hσu
2 » β, yL. To obtain the full 

posterior f Hβ, σu
2 » yL via the Gibbs procedure:

Initialize σu2@0D to any feasible value. The ith sweep of the sampler is:

è Draw β@iD from f Hβ » y, σu
2@i−1DL. (This will be a draw from a multivariate 

normal posterior.)

è Draw σu2@iD from f@σu
2 » y, β@iDL. (That is, draw 1êσu

2@iD from the gamma 
posterior.)

Proceed, iteratively drawing σu2@iD and β@iD.

Notes

è The f Hβ, σu
2 » yL is an exact small-sample distribution. 

We now return to ...

à 6. The Roll model
Recall that we're working with the price change specification:

(17)∆pt = c ∆qt + ut

The sample is p1, p2, ..., pT, and there are T − 1 price changes.

The unknowns are the parameters c and σu2, and the latent data: q1, ..., qT.
In the Bayesian perspective, parameters and latent data are treated identically, and 
"estimated" in a similar fashion.
We don't need to construct priors for the qt. We can use the ones we assumed in the data 
generating process: qt = ±1 with equal probabilities.
The prior on c is c∼N HμPrior, ΩPriorL restricted to c > 0. (I often take μPrior = 0 
and ΩPrior = 1. Remember that these are parameters of the truncated distribution, not 
the true mean and variance.)
The prior on σu2 is inverted gamma with parameters a and b. (I often take a = b = 10−6.)
The Gibbs sampler will look like this:

è Initialize c@0D, σu2@0D and q1
@0D, ..., qT

@0D to any feasible values. (I usually 
take q1 = 1; qt = Sign H∆ptL if ∆pt ≠ 0, qt = qt−1 if ∆pt = 0. For US 
equities, c = 0.01 ("1%") is a good ballpark figure, if we're working in logs, 
and σu2 = 0.012).

For the ith sweep of the sampler:

è Estimate the price change specification as a regression, assuming that 
qt = qt

@i−1D and that σu2 = σu
2@i−1D. Construct the posterior for c, and draw 

c@iD from this posterior.

è Using c@iD, compute the residuals from the regression. Construct the posterior 
for σu2 and draw σu2@iD from this posterior.

8
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è Draw q1
@iD from f Iq1 » c@iD, σu

2@iD, q2
@i−1D, q3

@i−1D, ..., qT
@i−1DM

Draw q2
@iD from f Iq2 » c@iD, σu

2@iD, q1
@iD, q3

@i−1D, ..., qT
@i−1DM

...
Draw qT@iD from f IqT » c@iD, σu

2@iD, q1
@iD, q2

@iD, ..., qT−1
@iDM

The first two steps of the sweep are, as discussed, standard Bayesian procedures. We 
now turn to the third step: simulating the trade direction indicators 

à 7. Estimating the qt using a Gibbs sampler.
In this section, we'll be taking c and σu2 as known. We'll first look at the simple case 
where T = 2. We can get closed-form results here, so we don't really need a Gibbs 
procedure, but it's a good starting point.

á The distribution of q1 and q2 when T=2

Graph 
Suppose:

p1 = 1; p2 = 1.8; c = .5;

1 2
Time

0.5

1

1.5

2

2.5

ecirP

p1

m1Hq1=-1L

m1Hq1=+1L

p2

m2Hq2=-1L

m2Hq2=+1L

A. u2Hq1=-1, q2=-1L

B. u2Hq1=-1, q2=+1L

C. u2Hq1=+1, q2=-1

D. u2Hq1=+1, q2=+1L

Given p1 and c, a choice of q1 determines m, and similarly for p2.
Therefore, setting q1 and q2 fixes u2 = m2 − m1.
Since q1, q2 ∈ 8−1, +1<, there are four possible paths (values) for u2. These are 
labeled A, B, C and D in the figure. Since low values of » u2 » are more likely than 
high values, the relative lengths of these paths indicate the relative likelihood of the 
Hq1, q2L realizations that determined them:

è Intuitively, path B is the shortest, so it is most likely that q1 = −1, q2 = +1.

è Path C is the longest, so it is least likely that q1 = +1, q2 = −1.
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è Paths A and D are of equal length, corresponding to the realizations 
q1 = q2 = −1 and q1 = q2 = +1.

We now turn to a more exact treatment.

The joint density of q1 and q2
The density function for u is f Hu2L =

Æ
− u2ccccccccc2 σu2

ccccccccccccccccccccè!!!!!!!2 π σu

By rearranging the price change specification, u2 =

u2@q1, q2D
−c H−q1 + q2L + ∆p2

The probability Pr@q1, q2D ∝ f Hu2@q1, q2DL

Pr@q1, q2D ê. PrRule

Æ
− H−c H−q1+q2L+∆p2L2cccccccccccccccccccccccccccccccccccccccc

2 σu2

ccccccccccccccccccccccccccccccccccè!!!!!!!2 π σu

The possible outcomes are:

Outcomes = 88−1, −1<, 8−1, +1<, 8+1, −1<, 8+1, +1<<;
TableForm@Outcomes, TableHeadings → 8None, 8q1, q2<<D
q1 q2
−1 −1
−1 1
1 −1
1 1

We'll normalize by the sum of the probabilities:

PrSum = Plus @@ Apply@Pr, Outcomes, 81<D
Pr@−1, −1D + Pr@−1, 1D + Pr@1, −1D + Pr@1, 1D

PrNRule = PrN@q1 : _, q2 : _D � Pr@q1, q2DêPrSum;

The normalized probability is:

PrN@q1, q2D ê. PrNRule

Pr@q1, q2Dccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Pr@−1, −1D + Pr@−1, 1D + Pr@1, −1D + Pr@1, 1D

For demonstration purposes, here are some values:

nValues = 8∆p2 → .8, σu → 1, c → 0.5<;

With thes values, the normalized probabilities are:

q1 q2 Probability
−1 −1 0.276061
−1 1 0.372643
1 −1 0.0752353
1 1 0.276061
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Gibbs sampler
We can draw the trade direction indicator variables jointly in this case. There's no need 
to use a Gibbs sampler. But for illustration purposes, let's build it.

The required conditional probabilities are Pr@q1 » q2D and Pr@q2 » q1D.  These may 
be computed directly from joint distribution given above, but it is usually 
computationally easier to work with the odds ratio. 
For example, u2@q1, q2D =

−c H−q1 + q2L + ∆p2

Its density is:

Æ
− H−c H−q1+q2L+∆p2L2cccccccccccccccccccccccccccccccccccccccc

2 σu
2

ccccccccccccccccccccccccccccccccccè!!!!!!!2 π σu

So given q2, the odds in favor of a buy at time 1 are Odds HBuyL = Pr@q1=+1»...DcccccccccccccccccccccccccccPr@q1=−1»...D =

OddsBuy1 =
f ê. q1 → +1
cccccccccccccccccccccccccccccc
f ê. q1 → −1

êê Simplify

Æ
2 c Hc q2−∆p2Lcccccccccccccccccccccccccccc

σu2

Then Pr@BuyD = Odds HBuyLcccccccccccccccccccccccc1+Odds HBuyL . We compute this probability and make a draw for q1.

For the particular numeric values we worked with above 
H∆p2 = 0.8, c = 0.5, σu = 1L, these odds, for q2 = +1 and q2 = −1 are:

80.740818, 0.272532<

So, for example, if q2 = +1, Pr@q1 = +1 » ...D =

0.425557

Similarly, given q1, the odds in favor of a buy at time 2 are Pr@q2=+1»...DcccccccccccccccccccccccccccPr@q2=−1»...D =

OddsBuy2 =
f ê. q2 → +1
cccccccccccccccccccccccccccccc
f ê. q2 → −1

êê Simplify

Æ
2 c Hc q1+∆p2Lcccccccccccccccccccccccccccc

σu2

For the numeric values, these are (for q1 = +1 and q1 = −1):

83.6693, 1.34986<

The Gibbs sampler involves the following steps:

We construct a series of realizations in the following fashion:

Initialize q1
@0D, q2

@0D = ±1 (it doesn't matter which).

The ith sweep involves the following steps:

è Draw q1
@iD from PrAq1 … q2@i−1DE

è Draw q2
@iD from PrAq2 … q1@iDE

After N sweeps we'll  have a series of N simulated realizations: 
q@0D, q@1D, ..., q@ND where q@iD = Iq1@iD, q2

@iDM.
In the limit, as N → ∞, the distribution of q@ND is the joint distribution Pr@q1, q2D

11
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The sampler was implemented in a SAS program (RollGibbs 2-trade case.sas), which 
was run for 10,000 sweeps. The tabulated frequencies of the simulated draws were:

-----------------------------------------------
|                            |   N    |  PctN  |
|----------------------------+--------+--------|
|outcome                     |        |        |
|q1= 1 q2= 1                 |   2,785|    27.9|
|q1= 1 q2=-1                 |     752|     7.5|
|q1=-1 q2= 1                 |   3,751|    37.5|
|q1=-1 q2=-1                 |   2,712|    27.1|
|All                         |  10,000|   100.0|
------------------------------------------------

Compare these to the computed probabilities above.

Why do we ever need to use Gibbs sampler when we can compute path probabilities 
directly?

We need to compute path probabilities for the entire sample. With two price 
observations, there are 22 = 4 buy/sell paths.
A year contains about 250 trading days. The number of buy/sell paths is:

2250

1809251394333065553493296640760748560207343510400633813116524g

750123642650624

á The T-trade case

A sweep of the sampler will involve:

è Draw q1
@iD from Pr Iq1 … q2@i−1D, q3

@i−1D, ..., qT
@i−1DM

Draw q2
@iD from Pr Iq2 … q1@iD, q3

@i−1D, ..., qT
@i−1DM

...
Draw qT@iD from Pr IqT … q1@iD, q2

@iD, ..., qT−1
@iDM

In general, Pr@qt » ...Ddepends only on the adjacent trades - those at times t − 1 
and t + 1. So the sampler becomes:

è Draw q1
@iD from Pr Iq1 … q2@i−1DM

Draw q2
@iD from Pr Iq2 … q1@iD, q3

@i−1DM
...
Draw qT@iD from Pr IqT … qT−1

@iDM
The first draw, for q1, is the same as the draw for q1 in the T = 2 case.

The last draw, for qT, is the same as the draw for q2 in the T = 2 case.

We now turn to the middle draws.

ut+1 ê. uRule

c H−qt + q1+tL + ∆p1+t

Since the ut are assumed to be independent, the joint density f Hut, ut+1L ∝
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PDF@NormalDistribution@0, σuD, utD 

PDF@NormalDistribution@0, σuD, ut+1D

Æ
− ut

2
ccccccccc
2 σu

2 − u1+t
2

cccccccccc
2 σu

2

cccccccccccccccccccccccc
2 π σu2

f = % ê. uRule êê Simplify

Æ
− H−c q−1+t+c qt+∆ptL2+H−c qt+c q1+t+∆p1+tL2cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

2 σu2

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 π σu

2

The odds ratio is:

(18) Odds = Pr@qt=+1»...DcccccccccccccccccccccccccccPr@qt=−1»...D

Odds =
f ê. qt → +1
cccccccccccccccccccccccccccccc
f ê. qt → −1

êê Simplify

Æ
2 c Hc q−1+t+c q1+t−∆pt+∆p1+tLcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

σu2

from which we may compute

(19)Pr@qt = +1 » ...D = Oddscccccccccccccc1+Odds

and make the desired draw.

á Examples (SAS program RollGibbs Analyze q.sas)

I simulated twenty trades for a price process with σu = 0.01 and c = 0.01, and then 
ran the Gibbs sampler for 2,000 sweeps to estimate the trade directions. Here is a plot of 
the transaction prices:

Below are the actual and average simulated trade directions. Actuals are indicated by a 
dot; estimated are indicated by the bars.
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Note that estimates by and large agree with with actuals, at least in direction (q16 is the 
sole exception). 

Now, consider the same analysis, with the cost parameter changed to c = 0.005, i.e., 
one-half the previous value. The figure below shows the prices. Notice that the bid-ask 
bounce is much less visually evident.

Here are the actual and estimated trade direction indicators:

The buy/sell classification accuracy here is weaker. There are more directionally 
incorrect inferences, and the directions that are correctly identified are weaker.  Just as 
we'd have a harder time picking out the buys and sells visually, the sampler has a 
tougher time classifying trades.

14

EMM Roll Gibbs v0100.nb 10/29/06



We'll now try things with σu = 0.01 and c = 0.001. Here's the price path:

And here are the actual and estimated trade directions.

The intuition is as follows. Intuitively, the Gibbs sampler tries to figure out how much of 
an oberserved price change is transient (due to bid ask effects) and how much is 
permanent (the efficient price innovation). When c is large relative to σu, bid-ask 
bounce generates reversals that are easy to pick out visually, and using the sampler.  
When c is small, though, bid-ask effects are swamped by the innovations in the efficient 
price, and are not easily discerned.

We'll see that this extends to the parameter estimates as well.

á Modification when some of the q's are known.

In some samples, it might happen that the trade directions are known for some subset of 
the qt. For these qt, we don't simulate; we simply leave them at their known values.

This might seem to violate the assumed probability structure of the model in a 
fundamental way. After all, if the data generating process and our priors are that 
qt = ±1, with equal probability, how can a definite realization be accomodated? The 
answer is that we're conditioning on the observed data, and the only thing that matters is 
the prior distribution of the qt that we don't observe.

By way of a more formal justification, we could assume that the data generating process 
involves two steps:
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è First qt is drawn, ±1, each with probability 1cccc2 .

è Next, an indicator variable Ot is drawn. With probability π, Ot = 1, and the 
actual qt is observed. With probability 1 − π, Ot = 0, and the actual qt is 
unobserved.

As part of the sample, we "observe" the realizations of Ot. That is, we know which qt 
are known for sure. If we don't care about modeling the Ot process, letting the observed 
qt remain at their known values and simulating the rest corresponds to estimation 
conditional on the realized Ot. This is a sensible way to proceed.

In doing this, we are implicitly assuming that the Ot process is independent of qt and 
ut. If buys are more likely to be observed than sells, or if the realization of Ot depends 
on the magnitude of ut ("Trades are more likely to be observed for large efficient price 
movements"), then the Ot process is informative, and we may wish to model it explicitly.

á Modification when some of the q's are zero.

The U.S. daily CRSP dataset reports closing prices. But if there is no trade on day t, 
then the reported price is the midpoint of the closing bid and ask. This event is indicated 
in the data (using a negative price). Essentially, pt = mt.

Formally, we can incorporate this into the data generating process by noting that 
pt = mt + c qt = mt when qt = 0. 

We can handle this situation in a fashion similar to the known-qt case discussed above. 
If the price reported at time t is a quote midpoint, we set qt = 0, and don't resample it 
during the sweeps. 

Formally, this can be justified by letting Ot denote an indicator variable of whether or 
not there was a trade. Estimation can then proceed condtional on the Ot realizations.  
Here as well, we're implicitly assuming idependence. We're ruling out (or at least not 
modeling), for example, the possibility that trades are more likely to occur on days when 
there are large efficient price changes.

à 8. Full estimation of the Roll model

á Sample runs from Roll Gibbs 01.sas

In all cases, the prior on c is N Hμc
Prior, Ωc

PriorL, restricted to c > 0, with μcPrior = 0 
and ΩcPrior = 1. The prior on σu2 is inverted gamma with a = b = 1×10−6.

σu = .01; c = 0.01, 100 observations, 20,000 sweeps (first 
20% dropped)
Posteriors:

Variable        N      Mean       Dev       Min       Max
---------------------------------------------------------
SWEEP       16000     12001      4619      4001     20000
SDU         16000    0.0129    0.0016    0.0088    0.0211
C           16000    0.0091    0.0014    0.0001    0.0132
---------------------------------------------------------
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Contour plot of joint posterior:
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Note the downward slope of posterior. The procedure is trying to allocate volatility, 
either to the permanent (random-walk) component or to the transient component 
(effective cost). If more volatility is attributed to the sdu component, less is attributed to 
c.

σu = .01; c = 0.001, 100 observations, 20,000 sweeps (first 
20% dropped)
When c << σu, the transient cost effects (reversals) are difficult to disentangle from the 
random-walk component. We still get a reasonably sharp posterior for σu H = sduL, but 
the posterior for c is broad.

Posteriors:

Variable        N      Mean       Dev       Min       Max
---------------------------------------------------------
SWEEP       16000     12001      4619      4001     20000
SDU         16000    0.0107    0.0008    0.0082    0.0148
C           16000    0.0014    0.0010      8E-8    0.0057
---------------------------------------------------------

Contour plot of joint posterior:
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Use of an unrestricted prior for c
Is it really necessary to require c > 0? After all, if c really is non-negative, shouldn't the 
procedure pick it up?

When we run the last problem with no restrictions on c, two things happen.

è For all of the qt, the sample draws average out to zero. (We can't tell whether a 
given trade is a buy or a sell.)

è The posterior for c is bimodal, and symmetric about zero.

Here's an example. 30 observations were simulated with σu = 0.01 and c = 0.01. The 
prior for c was not restricted to be non-negative. Here is the posterior:

What's happening is this. The Roll model with c > 0 is observationally equivalent to one 
in which c < 0, and the trade signs are reversed. Without the nonnegativity restriction 
on c, the posterior (and the sampler) will span both possibilities.

Using vague prior for c
In the preceding simulations, the prior for c is N H0, 1L, restricted to c > 0. This is 
fairly flat over the usual region of interest. (For a US equity, even extreme values of c, 
estimated from trade and quote data, are rarely above 0.05.) Nevertheless, there is some 
curvature. Why not remove all doubt and set the prior to, say, N H0, 1000000L?

The problem with this is that under some circumstances we may need to make a draw 
from the prior. This is not common, but in a small sample, with c << σu, over many 
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draws, the following situation may arise. Suppose that on a particular sweep, the trade 
direction indicators are drawn to have the same sign: q1 =. .. = qT = +1 or 
q1 =. .. = qT = −1. In this case, all of the ∆qt are zero. But the ∆qt are the r.h.s. 
variables in the price change regression. If an explanatory variable in a regression has no 
variation, the regression is completely uninformative. In this case, the draw of c for that 
sweep must be made from the prior.

à 9. Return factors
Return factors are logically introduced by adding them to the efficient price change 
specification, e.g., 

(20)mt = mt−1 + ft�  b + ut

where ft is a K×1 vector of known factor realizations and b is the vector of loadings 
(factor coefficients). The factor terms then appear in the trade price specification:

(21)∆pt = c ∆qt + ft�  b + ut

For example, a market model for stock i might be specified as:

(22)∆pit = c i ∆qit + bi rm + ut

where rm is the return on a market index.

The b are estimated as another coefficient in the Bayesian regression (the same 
regression in which c is estimated). The parameters of the coefficient prior μβ

Prior and 
Ωβ
Prior are expanded to include the new coefficients, and they are drawn (simulated) in 

the same step as the draw for c.

The addition of a return factor will generally increase the resolution between permanent 
(random-walk) and transient (bid-ask) components. In practice, this accomplishes two 
things:

è We'll get a better estimate of c. 

è We'll also generally get better estimates of b. 

The first of these is pretty straightforward: the explanatory power of the factors reduces 
the residual variance. The second point may require some expansion. bs are 
conventionally estimated using daily price changes. These daily price changes are 
contaminated by bid-ask bounce. For some stocks, bid-ask bounce may be large 
compared to the factor-induced and idiosyncratic changes in the efficient price, leading 
to large estimation errors in the bs.  Estimating a specification that includes a c ∆qt 
term effectively allows us to estimate bs on price series that are purged of the bid-ask 
bounce.

Market model example (RollGibbsBeta 01.sas)
The specification is the one-factor model described above The parameters are: 
c = 0.01; rm∼N H0, σm

2L with σm = 0.01; σu = 0.01; β = 1.1.
100 observations were simulated; 10,000 sweeps (first 20% discarded).
The posterior summary statistics are:

Variable       N      Mean       Dev       Min       Max
--------------------------------------------------------
SWEEP       8000      6001      2310      2001     10000
SDU         8000    0.0106    0.0012    0.0076    0.0174
C           8000    0.0109    0.0009    0.0070    0.0141

20

EMM Roll Gibbs v0100.nb 10/29/06



BETA        8000     1.100     0.139     0.603     1.607
--------------------------------------------------------

For purposes of comparison, β was also estimated in the usual way (OLS). The 
estimated specification:

(23)r = 1.132
H0.186L

rm + e.

The standard error of the β estimate is 0.186 - modestly higher than the 0.138 value for 
the Gibbs estimate.
Here are the posteriors:
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à Extensions
Hasbrouck (2006) discusses variation in c. Hasbrouck (2004) discusses variations with 
asymmetric information.

à Transformations of the Gamma distribution
When a = nê2 and b = 1ê2, the Gamma becomes:

PDF@ChiSquareDistribution@nD, xD

2−nê2 Æ−xê2 x−1+ ncccc2
ccccccccccccccccccccccccccccccccccccccc

Gamma@ ncccc2 D

We sometimes need to determine the pdf's of σu2 and/or σu.

If 1cccccσu
2  is Gamma, then what is the pdf of σu2?

Recall that if y = g HxL, then f HyL = f Hg−1 HyLL » g−1 � HyL »
gRule = 8g@x_D � x−1, gi@y_D � y−1<;

fy = PDF@GammaDistribution@a, λD, xD∗ D@−gi@yD ê. gRule, yD ê.
λ → 1ê b ê. x → gi@yD ê. gRule êê Simplify

H 1ccccb L
−a

Æ− bccccy H 1ccccy L
1+a

ccccccccccccccccccccccccccccccccccccccccccccc
Gamma@aD

Verify that this integrates to unity:

Integrate@fy, 8y, 0, ∞<,
Assumptions −> 8a ∈ Reals, b ∈ Reals, a > 0, b > 0<D

1

Compute the expectation:

Integrate@y fy, 8y, 0, ∞<,
Assumptions −> 8a ∈ Reals, b ∈ Reals, a > 1, b > 0<D
b

cccccccccccccccc
−1 + a

If 1cccccσu
2  is Gamma, then what is the pdf of σu (the standard deviation)?

gRuleSD = 8g@x_D � x−1ê2, gi@y_D � y−2<;

fy = PDF@GammaDistribution@a, λD, xD∗ D@−gi@yD ê. gRuleSD, yD ê.
λ → 1ê b ê. x → gi@yD ê. gRuleSD êê Simplify

2 H 1ccccb L
−a

Æ− bccccccy2 H 1cccccy2 L
a

cccccccccccccccccccccccccccccccccccccccccccccccc
y Gamma@aD

Verify that this integrates to unity:

Integrate@fy, 8y, 0, ∞<,
Assumptions −> 8a ∈ Reals, b ∈ Reals, a > 0, b > 0<D

1
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Compute the expectation:

Integrate@y fy, 8y, 0, ∞<,
Assumptions −> 8a ∈ Reals, b ∈ Reals, a > 1, b > 0<D
è!!!b Gamma@− 1cccc2 + aD
ccccccccccccccccccccccccccccccccccccccccccccccc

Gamma@aD
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